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Abstract

This paper investigates the use of conditional gener-
ative adversarial networks (cGANs) to both synthe-
size and bypass CAPTCHA images, aiming to evalu-
ate the robustness of CAPTCHA security mechanisms.
We implemented a cGAN that generates 5 character
grayscale CAPTCHAs of size 128 x 128, conditioned
on ground truth labels, and train an OCR model to
bypass the generated CAPTCHAs. Experimental re-
sults highlight the trade-offs between image fidelity
and bypass accuracy, and underscore current limitations
in GAN-based security attacks. Code is available at
(github.com/mabbasii/CaptchaBypass)

1 Introduction

CAPTCHAs are widely used to distinguish human users
from automated bots by presenting tasks that are easy
for humans but challenging for machines. Recent ad-
vances in deep learning, particularly generative adver-
sarial networks (GANSs), have raised concerns about the
potential to both generate CAPTCHASs that resist auto-
mated attacks and to bypass existing CAPTCHAs. This
work explores the dual use of conditional GANs (cGANs)
for CAPTCHA generation and bypass, providing insights
into the robustness of current security mechanisms.

2 Related Work

Mirza and Osindero first proposed cGANs, demonstrat-
ing conditional image synthesis by feeding labels to both
generator and discriminator. This also gave a foundation
for starting to build the architecture of our own model,

as we incorporated their idea of multiple inputs, to cre-
ate our two stream discriminator. [1]. We utilized the
“Large CAPTCHA Dataset” by Guna from Kaggle, which
consisted of 82K CAPTCHA images [2]. Each sam-
ple from the dataset consisted of a 5 character string of
uppercase letters, lowercase letters, numbers as well as
noise, usually in the form of a line through the letters.
Using this, enabled training on a robust dataset that al-
lowed the model to encounter many variations of charac-
ter CAPTCHAs. Lastly, recent tutorials on cGAN control
over outputs [3] and advances in OCR robustness [4] in-
formed our methodology.

3 Methods

3.1 Conditional GAN Architecture

Our original architecture consisted of a generator that
took a noise vector and one hot encoded label for a 5
character CAPTCHA. It utilizes a series of ConvTrans-
pose2d layers to output a 256x256 grayscale image. We
then employed a two stream discriminator that took in-
puts of an image and label. We originally intended to have
our discriminator output two results, a classification of the
image that we would compare with the actual label, and
also if the image is real or fake. This was done through a
CNN composed of Conv2d layers and an Optical Charac-
ter Recognition (OCR) model, that outputted the label and
real vs fake respectively. We then calculated the losses us-
ing both of these outputs separately, and combined them
to get the total loss of the discriminator/generator.
However, we found that using this two stream discrim-
inator approach, was very difficult to optimize, since typi-
cally the OCR model within the discriminator would learn
faster then the CNN, causing the generator to create char-



acters that are unsurpassable for humans. This will be dis-
cussed more the in the Experiments section. To compen-
sate for this, we separated the OCR model from the dis-
criminator and made label classification and real vs fake
separate.

Our final architecture had minimal changes to the gen-
erator, but it now outputs a 128x128 image. The discrimi-
nator now is a regular one stream CNN model, that simply
takes the image, and outputs whether its real or fake.

3.2 OCR Model

An independent CNN based OCR model downsamples
inputs to 128 x 128 grayscale, predicts each character
via five classification heads, and aggregates cross-entropy
losses per position to compute a total loss for training.

OCR Model Architecture

Conv1 Conv2 Conva
3x3, 32 3x3, 64 3x3, 128
Input BatchNorm BatchNorm BatchNom
(HW) RelU RelU RelU
MaxPool

MaxPool MaxPool

e 32xH2AW2 BaHIAWIA 128xHIBWIS

128xHIBXWIS

128x16%16 258 Reshaped

Note: Assuming input size leads to 1616 feature maps after pooling

Figure 1: OCR Model Architecture

4 Experiments

41 Runl

We originally conducted two major runs. Run 1 used
learning rates of 0.001 for both generator and discrimina-
tor over 30 epochs; we observed rapid discriminator dom-
inance. The generated images became cleaner as training
went on, but the generator never seemed to create charac-
ters that could actually be solved.

The loss curves show that the discriminator loss
dropped very early on in training and stayed relatively low
throughout the entire run. This is also reflected in the gen-
erator loss, being very sporadic and also much higher than
the discriminator loss.

Generated CAPTCHAs (Epoch 30)

Figure 2: Run 1 Output
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Figure 3: Run 1 Loss Curves

4.2 Run2

To compensate for the dominating discriminator, Run 2
adjusted learning rates to 0.0005 (generator) and 0.0001
(discriminator) over 65 epochs, so the generator learn-
ing 5x faster then discriminator, thus improving genera-
tor convergence (see loss curves). The goal was to have
the generator learn faster, to prevent the discriminator loss
from dropping early and dominating the training. The out-
put from this architecture was an improvement over the
first run as it started creating characters that somewhat re-
sembles real letters/numbers.

However, in general, the generated output was still un-
readable for a human to solve. We theorized that the cause
of this, was the use of the two stream discriminator. The
OCR may have been learning faster then the CNN, caus-
ing the generator to create output that is solvable for the
model, but nonsense for humans. Which is how the final
architecture of having the discriminator and OCR model
separate, came to be.



Generated CAPTCHAs (Epoch 25)

Figure 4: Run 2 Output
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Figure 5: Run 2 Loss Curves

4.3 Final Run

The final architecture clearly had the most intelligible out-
put, with some of the characters being very similar to real
letters/numbers. Having the cGAN focus on generating
CAPTCHASs that can pass as real, rather then real and hard
to solve, made the model much simpler, which likely con-
tributed to the better results. The generator loss also did
not spike as much throughout training, but in the end it
was still much higher than the discriminator loss. Gen-
erated output was also not suitable for training the OCR
model, so we resulted in training the OCR on the “Large
Captcha Dataset” instead. While training, the OCR eval-
uation measured both full-sequence and per-character ac-
curacy, revealing that per-character metrics better reflect
partial success.

S5 Conclusion
Our cGAN framework generates CAPTCHA images, but

image quality remains insufficient for reliable bypass.
Discriminator tuning improved the quality of the images,
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Figure 6: Final Run Output

but additional testing such as more hyperparameter tun-
ing in both the generator and discriminator is needed in
the future. Additionally, revamping our OCR architec-
ture or even simply using a premade OCR model, could
have made training easier, and allowed us to focus on fine
tuning the cGAN architecture. Future work will likely
explore advanced GAN regularization and incorporating
OCRs into discriminators, that will help our original goal
succeed.
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